Correction to: Generalized Ricci soliton and paracontact geometry

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special connections in almost paracontact metric geometry

‎Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections‎: ‎Levi-Civita‎, ‎canonical (Zamkovoy)‎, ‎Golab and generalized dual‎. ‎Their relationship is also analyzed with a special view towards their curvature‎. ‎The particular case of an almost paracosymplectic manifold giv...

متن کامل

A note on Kähler-Ricci soliton

In this note we provide a proof of the following: Any compact KRS with positive bisectional curvature is biholomorphic to the complex projective space. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the previous solutions of Frankel conjecture: T...

متن کامل

Eta-Ricci solitons on para-Kenmotsu manifolds

In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...

متن کامل

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

Generalized Discrete Ricci Flow

Surface Ricci flow is a powerful tool to design Riemannian metrics by user defined curvatures. Discrete surface Ricci flow has been broadly applied for surface parameterization, shape analysis, and computational topology. Conventional discrete Ricci flow has limitations. For meshes with low quality triangulations, if high conformality is required, the flow may get stuck at the local optimum of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The São Paulo Journal of Mathematical Sciences

سال: 2021

ISSN: ['2316-9028', '1982-6907']

DOI: https://doi.org/10.1007/s40863-021-00263-y